Caller vs. Callee

- caller is the client using the service provided by another method.

- callee is the supplier providing the service to another method.

class C1 {
void mil() {
C2 o = new C2();
o.m2(); /* static type of o is C2 x*/

}
}

Q: Can a method be a caller and a callee simultaneously?

Visualizing a Call Chain using_a Stack

ml ()1

mzC s

m2()1

m3C g

call stack

=i

What to Do When an Exception is Thrown: Call Stack

Method where error occurred and an
exception object thrown

(top of call stack)
throws an > method call

exception

Method without an exception handler

forwards/
propagates method call
an exception

Method with an exception handler
catches an
exception

method call

main method
(bottom of call stack)

Catch-or-Specify Requirement

The “Catch” Solution: A t ry statement that catches and
handles the exception
(without propagating that exception to the method’s caller).

main(...) {
Circle ¢ = new Circle();
try {
c.setRadius(-10);

}
catch (NegativeRaidusException e) {

The “Specify” Solution: A method that specifies as part of its

header that it may (or may not) throw the exception
(which will be thrown to the method’s caller for handling).

class Bank {
Account[] accounts; /* attribute x*/
void withdraw (double amount)
throws InvalidTransactionException {

accounts[i] .withdraw(amount) ;

Example: To Handle or Not To Handle?

class A {
ma (int 1) {
if(i < 0) { /» Error */ }
else { /+ Do something. #*/ }

b

i Version 1:
class B { Handle it in B.mb
mb (int 1) { Version 2:

context

caller

callee

A oa = new A(); Pass it from B.mb and handle it in Tester.main

oa.ma(i); /+ Error occurs if i < 0 =/ jVersion 3:

b} Pass it from B.mb, then from Tester.main, then throw it to the

console.

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner (System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(1i); /* Where can the error be handled? */

class NegValException extends Exception {
NegValException (String s) { super(s); }

